Mitochondrial dysfunction in myofibrillar myopathy

نویسندگان

  • Amy E. Vincent
  • John P. Grady
  • Mariana C. Rocha
  • Charlotte L. Alston
  • Karolina A. Rygiel
  • Rita Barresi
  • Robert W. Taylor
  • Doug M. Turnbull
چکیده

Myofibrillar myopathies (MFM) are characterised by focal myofibrillar destruction and accumulation of myofibrillar elements as protein aggregates. They are caused by mutations in the DES, MYOT, CRYAB, FLNC, BAG3, DNAJB6 and ZASP genes as well as other as yet unidentified genes. Previous studies have reported changes in mitochondrial morphology and cellular positioning, as well as clonally-expanded, large-scale mitochondrial DNA (mtDNA) deletions and focal respiratory chain deficiency in muscle of MFM patients. Here we examine skeletal muscle from patients with desmin (n = 6), ZASP (n = 1) and myotilin (n = 2) mutations and MFM protein aggregates, to understand how mitochondrial dysfunction may contribute to the underlying mechanisms causing disease pathology. We have used a validated quantitative immunofluorescent assay to study respiratory chain protein levels, together with oxidative enzyme histochemistry and single cell mitochondrial DNA analysis, to examine mitochondrial changes. Results demonstrate a small number of clonally-expanded mitochondrial DNA deletions, which we conclude are due to both ageing and disease pathology. Further to this we report higher levels of respiratory chain complex I and IV deficiency compared to age matched controls, although overall levels of respiratory deficient muscle fibres in patient biopsies are low. More strikingly, a significantly higher percentage of myofibrillar myopathy patient muscle fibres have a low mitochondrial mass compared to controls. We concluded this is mechanistically unrelated to desmin and myotilin protein aggregates; however, correlation between mitochondrial mass and muscle fibre area is found. We suggest this may be due to reduced mitochondrial biogenesis in combination with muscle fibre hypertrophy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk stratification in hypertrophic cardiomyopathy: fact or fiction?

Hypertrophic cardiomyopathy (HCM) is an inherited cardiac muscle disease that affects sarcomeric proteins, resulting in severe hypertrophy, myofibrillar disorganization, and enhanced interstitial fibrosis. The disease is often familial, with autosomal-dominant transmission. More than 100 different mutations in 10 genes that encode sarcomeric proteins have been described (1–3). Hypertrophy typic...

متن کامل

Transgenic mice expressing the myotilin T57I mutation unite the pathology associated with LGMD1A and MFM.

Myotilin is a muscle-specific Z-disc protein with putative roles in myofibril assembly and structural upkeep of the sarcomere. Several myotilin point mutations have been described in patients with limb-girdle muscular dystrophy type 1A (LGMD1A), myofibrillar myopathy (MFM), spheroid body myopathy (SBM), three similar adult-onset, progressive and autosomal dominant muscular dystrophies. To furth...

متن کامل

Histochemical And Electron Microscopic Diagnosis Of Mitochondrial Myopathy: The First Case Report From Iran

  Muscle tissue, skeletal muscle as well as cardiac muscle, is commonly affected in mitochondrial disorders. One explanation for this observation is that muscle tissue has a high-energy demand and therefore is more sensitive to a deficiency of mitochondrial energy production than some other tissues. In mitochondrial disorders, skeletal muscle tissue may be affected primarily by defective respi...

متن کامل

Role of Myofibrillar Protein Catabolism in Development of Glucocorticoid Myopathy: Aging and Functional Activity Aspects

Muscle weakness in corticosteroid myopathy is mainly the result of the destruction and atrophy of the myofibrillar compartment of fast-twitch muscle fibers. Decrease of titin and myosin, and the ratio of nebulin and MyHC in myopathic muscle, shows that these changes of contractile and elastic proteins are the result of increased catabolism of the abovementioned proteins in skeletal muscle. Slow...

متن کامل

BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress.

RATIONALE A homozygous disruption or genetic mutation of the bag3 gene, a member of the Bcl-2-associated athanogene (BAG) family proteins, causes cardiomyopathy and myofibrillar myopathy that is characterized by myofibril and Z-disc disruption. However, the detailed disease mechanism is not yet fully understood. OBJECTIVE bag3(-/-) mice exhibit differences in the extent of muscle degeneration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016